

Nematode resistance screening

PW17001 Final report Appendix 12 Integrated pest management of nematodes in sweetpotato

Jennifer Cobon, August 2023

Project team: DAF Sweetpotato Research - Sandra Dennien, Mary Firrell, Rachael Langenbaker, Michael Hughes, Jean Bobby and Brett Day. DAF Nematology - Jennifer Cobon, Wayne O'Neill and Tim Shuey.

This project has been funded by Hort Innovation using the sweetpotato research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit horticulture.com.au

This publication has been compiled by Jennifer Cobon of Agri-science Queensland, DAF.

© State of Queensland, 2021

The Department of Agriculture and Fisheries proudly acknowledges all First Nations peoples (Aboriginal peoples and Torres Strait Islanders) and the Traditional Owners and Custodians of the country on which we live and work. We acknowledge their continuing connection to land, waters and culture and commit to ongoing reconciliation. We pay our respect to their Elders past, present and emerging.

The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms.

You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication.

For more information on this licence, visit creativecommons.org/licenses/by/4.0.

The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information

Contents

Nematode resistance screening	. 4
Summary	. 4
Conference presentations	. 4
Introduction	. 5
Materials and methods	. 5
Meloidogyne javanica and M. incognita experiments	. 5
Rotylenchulus reniformis experiments	. 6
Pratylenchus zeae experiments	. 6
Results and discussion	. 6
Meloidogyne incognita and M. javanica experiments on rotation crops	. 6
R. reniformis experiments on rotation crops	11
P. zeae experiments on rotation crops	11
Meloidogyne incognita, M. javanica and R. reniformis experiments on sweetpotato cultivars	12
Conclusion	13

List of images

Image 1 Jennifer Cobon inoculating a potted plant species with nematodes	14
Image 2 Glasshouse pot trials inoculated with nematodes to test the host status of plant cultivars.	15

List of tables

Table 1 Summary or resistance/susceptibility of potentially useful rotation crop cultivars to two species
of <i>Meloidogyne</i> spp7
Table 2 Summary of resistance/susceptibility of rotation crop cultivars to reniform nematode
Table 3 Summary of resistance/susceptibility of rotation crop cultivars to lesion nematode (Pratylenchus zeae)
Table 4 Summary of resistance/susceptibility of sweet potato cultivars to two species of root-knot nematode and reniform nematode 12

Nematode resistance screening

Summary

Potential rotation crops and sweetpotato cultivars were screened in pot trials for their host status to the several species of nematodes identified in the survey and for their suitability in sweetpotato production systems. Growing a non-host rotation crop can reduce the numbers of plant-parasitic nematodes in the soil for the proceeding crop as the food source, on which the nematodes feed, has been removed.

Host range studies in the glasshouse screened 103 cultivars from 33 plant species for resistance to two species of root-knot nematode (*Meloidogyne incognita* and *M. javanica*), reniform nematode (*Rotylenchulus reniformis* - 7 cultivars screened from 7 plant species) and lesion nematode (*Pratylenchus zeae* - 10 cultivars from 2 plant species). Twenty-four cultivars of sweetpotato were screened for resistance to two species of root-knot nematode and six of the commonly grown cultivars of sweetpotato were screened for resistance to reniform nematode.

Susceptible crops can support the development of plant-parasitic nematode populations, with a reproduction factor greater than 1. Resistant crops are those that do not support the reproduction of plant-parasitic nematodes with a reproduction factor less than 1. For root-knot nematode, susceptible crops are further categorised as highly, moderately and slightly susceptible according to the reproduction factors.

Thirty-six varieties were resistant or highly resistant to *M. incognita*, *M. javanica* or both. This includes 2 brassicas, 13 legumes and 14 grasses resistant to *M. incognita* and 8 legumes and 14 grasses resistant *M. javanica*. Cultivars of eight legumes (ground nut, sunn hemp and pigeon pea), two oats, three grasses and three forage sorghums were resistant to both *M. incognita* and *M. javanica* making these cultivars excellent rotation crops to reduce root-knot nematode numbers when the species of root-knot nematode is unknown.

Additional information on the host status of these plant species to other plant-parasitic nematodes of concern for sweetpotato production can be found on the Lucid key developed during this project.

Conference presentations

Cobon, J.A., O'Neill, W.T., Shuey, T., Langenbaker, R., Dennien, S., 2021, Resistant Rotation Crops to reduce root-knot nematodes in sweetpotato production. Oral presentation at the 21st Australasian Plant pathology Society Conference, Tasmania (online conference), November 2021.

Cobon, J.A., O'Neill, W.T., Shuey, T., Langenbaker, R., Dennien, S., 2022. Glasshouse screening to identify rotation crops resistant to reniform nematode (Rotylenchulus reniformis) for the sweetpotato industry. Oral presentation at the 11th Australasian Soilborne Disease Symposium, Cairns, August 2022.

Cobon, J.A., O'Neill, W.T., Shuey, T., Langenbaker, R., Dennien, S., 2022. Plant-parasitic nematodes in sweetpotato production areas in Australia. Oral presentation at the 11th Australasian Soilborne Disease Symposium, Cairns, August 2022.

Lucid key development. This online key contains all information to date on crops and their resistance to several species of plant-parasitic nematodes.

Crop rotations and their resistance to plant-parasitic nematodes - Lucid4 Key Player (lucidcentral.org)

Up to date tables of possible rotation crops and sweetpotato cultivars and their resistance to several species of plant-parasitic nematodes have been published on the ASPG website.

Introduction

Growing a non-host crop as a rotation is a good management strategy to reduce nematode numbers in the soil before planting a susceptible plant crop. If plant-parasitic nematodes do not have roots on which to feed, their numbers will reduce.

Glasshouse host range studies screened 103 cultivars from 33 plant species for resistance to two species of root-knot nematode (*Meloidogyne incognita* and *M. javanica*), reniform nematode (*Rotylenchulus reniformis* - 7 cultivars screened from 7 plant species) and lesion nematode (*Pratylenchus zeae* - 10 cultivars from 2 plant species). Twenty-four cultivars of sweetpotato were screened for resistance to two species of root-knot nematode and six of the commonly grown cultivars of sweetpotato were screened for resistance to reniform nematode.

Possible rotation crops and sweetpotato cultivars can be distinguished into two groups. Susceptible crops can support the development of plant-parasitic nematode populations, with a reproduction factor greater than 1. Resistant crops are those that do not support the reproduction of plant-parasitic nematodes with a reproduction factor less than 1. For root-knot nematode, susceptible crops are further categorised as highly, moderately and slightly susceptible.

Thirty-six varieties were resistant or highly resistant to *M. incognita*, *M. javanica* or both. This includes 2 brassicas, 13 legumes and 14 grasses resistant to *M. incognita* and 8 legumes and 14 grasses resistant *M. javanica*. Cultivars of eight legumes (ground nut, sunn hemp and pigeon pea), two oats, three grasses and three forage sorghums were resistant to both *M. incognita* and *M. javanica* making these cultivars excellent rotation crops to reduce root-knot nematode numbers when the species of root-knot nematode in a filed/block is unknown or a mix of the 2 species .Two cultivars were resistant to *M. incognita* while 13 were resistant to *M. javanica*. One sweetpotato cultivar of the six screened was resistant to *R. reniformis*.

This resistance screening work has expanded the range of suitable rotation options for sweetpotato growers to help manage a range of plant-parasitic nematode pests. Available varieties may frequently change, especially for crops such as forage sorghum. This assessment of some new varieties, and some crop types which haven't previously been screened, provides a useful update of resistant rotations for the Australian sweetpotato industry. Screening of sweetpotato cultivars for nematode resistance under Australian conditions using locally sourced nematode species provides valuable information on varietal selection for growers.

Materials and methods

General methods are described in detail in appendix 2.

Meloidogyne javanica and M. incognita experiments

Seeds of each plant cultivar or vines of sweetpotato variety were sown directly into 1.5 L pots filled with pasteurised sand mix and pots of each cultivar tested were inoculated with 10,000 eggs of both nematode species.

The nematode treatment was replicated five times for each species and maintained in a glasshouse with plants fertilised fortnightly with a liquid fertiliser (Aquasol[®]). Tomato cv. Tiny Tim was grown and inoculated as the susceptible control.

At harvest, nematode eggs were stripped from the roots and level of resistance or susceptibility determined.

Rotylenchulus reniformis experiments

Seeds of each plant cultivar or vines of sweetpotato variety were sown directly into 1.5 L pots filled with an 80/20 mix of pasteurised sand mix and a pasteurised red ferrosol field soil obtained from Redlands Research Station. Vines were grown for three weeks before inoculation so that a healthy roots system was available for the nematodes to infect. Pots were inoculated at the rate of 7,396 eggs per pot for the rotation experiment and 14,500 eggs for the sweetpotato cultivar experiment.

The nematode treatment was replicated five times for each species and maintained in a glasshouse with plants fertilised fortnightly with a liquid fertiliser (Aquasol[®]). Tomato c.v. Tiny Tim was grown as the susceptible control.

At harvest, 16 weeks after inoculation for the rotation experiment or 23 weeks for the sweetpotato cultivar experiment, nematode eggs were stripped from the roots and level of resistance or susceptibility determined.

Pratylenchus zeae experiments

Seeds of each plant cultivar were sown directly into 1.5 L pots of modified UC mix. Pots of each cultivar tested were inoculated with approx. 1000 live juvenile and adult females of *P. zeae*.

The nematode treatment was replicated five times for each species and maintained in a glasshouse with plants fertilised fortnightly with a liquid fertiliser (Aquasol[®]). Maize cv. Messenger was grown and inoculated as the susceptible control.

At harvest, 13 weeks after inoculation with nematodes, the nematodes were extracted from the roots in a misting chamber over seven days and levels of resistance or susceptibility determined.

Results and discussion

Meloidogyne incognita and M. javanica experiments on rotation crops

Thirty-six varieties were resistant or highly resistant to *M. incognita*, *M. javanica* or both. This includes 2 brassicas, 13 legumes and 14 grasses resistant to *M. incognita* and 8 legumes and 14 grasses resistant *M. javanica* (Table 1). Cultivars of eight legumes (ground nut, sunn hemp and pigeon pea), two oats, three grasses and three forage sorghums were resistant to both *M. incognita* and *M. javanica* making these cultivars excellent rotation crops to reduce root-knot nematode numbers when species of root-knot nematode is unknown.

Resistant options suitable for summer (e.g. sorghum) and winter (e.g. oats) were identified to suit different rotation timings.

Table 1 Summary or resistance/susceptibility of po	entially useful rotation cro	op cultivars to two species	s of <i>Meloidogyne</i> spp.
--	------------------------------	-----------------------------	------------------------------

Common name	Species	Cultivar	Species of Meloidogyne	
			M. incognita	M. javanica
barley	Hordeum vulgare	Dictator	Moderately susceptible	Moderately susceptible
barley	Hordeum vulgare	Harpoon	Moderately susceptible	Moderately susceptible
barley	Hordeum vulgare	Moby	Moderately susceptible	Moderately susceptible
barley	Hordeum vulgare	Shepherd	Moderately susceptible	Moderately susceptible
Brassica/radish	Sinapis alba (White mustard)/Raphanus sativus (Doublet oilseed radish)	Biofum	Moderately susceptible	Moderately susceptible
Brassica	Brassica nigra	black		Moderately susceptible
Brassica/radish	Raphanus sativus	Black Jack	Highly resistant	Moderately susceptible
Brassica/radish	Brassica nigra (Black mustard)/Brassica carinata (Ethiopian mustard (cv. Cappucchino)	BQ Mulch	Moderately susceptible	Moderately susceptible
Brassica/radish	Brassica juncea	Caliente	Moderately susceptible	Highly susceptible
Brassica/radish	Brassica carinata	Cappucchino	Moderately susceptible	Moderately susceptible
Brassica/radish	Brassica carinata (Ethiopian mustard (cv. Cappucchino)/ Raphanus sativus (Terranova oilseed radish)	FungiSol	Slightly susceptible	Moderately susceptible
Brassica/radish	Brassica juncea	Mustclean	Highly susceptible	Highly susceptible
Brassica/radish	Raphanus sativus (Terranova radish)/Eruca sativa (Nemat)	Nemasol	Slightly susceptible	Moderately susceptible
Brassica/radish	Eruca sativa	Nemat	Slightly susceptible	Slightly susceptible
Brassica/radish	Brassica napus	Nemclear	Highly susceptible	Highly susceptible
Brassica/radish	Brassica napus	Nemcon	Moderately susceptible	Highly susceptible
Brassica/radish	Raphanus sativus	Terranova	Resistant	Moderately susceptible
Brassica/radish	Raphanus sativus	Tillage radish	Moderately susceptible	Moderately susceptible
buckwheat	Fagopyrum esculentum		Moderately susceptible	Highly susceptible
burgundy bean	Macroptilium bracteatum		Highly susceptible	Highly susceptible
butterfly pea	Clitoria ternatea		Resistant	Slightly susceptible
carpet grass, narrowleaf	Axonopus fissifolius		Moderately susceptible	Resistant
clover, crimson	Trifolium incarnatum		Highly susceptible	Highly susceptible

couch, green	Cynodon dactylon		Slightly susceptible	Slightly susceptible
cowpea	Vigna unguiculata	Caloona	Slightly susceptible	Highly susceptible
cowpea	Vigna unguiculata	Ebony	Moderately susceptible	Highly susceptible
cowpea	Vigna unguiculata	Red Caloona	Slightly susceptible	Highly susceptible
chicory	Cichorium intybus	Commander	Moderately susceptible	Highly susceptible
groundnut, peanut	Arachis hypogaea	Alloway	Highly resistant	Highly resistant
groundnut, peanut	Arachis hypogaea	A237	Highly resistant	Highly resistant
groundnut, peanut	Arachis hypogaea	Holt	Highly resistant	Highly resistant
groundnut, peanut	Arachis hypogaea	Kairi	Highly resistant	Highly resistant
groundnut, peanut	Arachis hypogaea	P85	Resistant	Highly resistant
groundnut, peanut	Arachis hypogaea	Wheller	Highly resistant	Highly resistant
lucerne	Medicago sativa	Alfacut	Moderately susceptible	Highly susceptible
lupins	Lupinus albus	Luxor	Moderately susceptible	Highly susceptible
maize	Zea mays	Monsoon8	Highly susceptible	Resistant
medic, snail	Medicago scutellata		Highly susceptible	Moderately susceptible
millet	Echinochloa esculenta	Japanese	Moderately susceptible	Moderately susceptible
millet	Echinochloa esculenta	Shirohie	Moderately susceptible	Moderately susceptible
millet	Panicum miliaceum	White French	Moderately susceptible	Moderately susceptible
millet	Pennisetum glaucum	Maxa	Moderately susceptible	Moderately susceptible
oats	Avena sativa	Algerian	Resistant	Slightly susceptible
oats	Avena sativa	Austin	Highly resistant	Slightly susceptible
oats	Avena sativa	Bannister	Slightly susceptible	Moderately susceptible
oats	Avena sativa	Carrolup	Resistant	Slightly susceptible
oats	Avena sativa	Comet	Resistant	Slightly susceptible
oats	Avena sativa	Culgoa II	Moderately susceptible	Moderately susceptible
oats	Avena sativa	Euro	Moderately susceptible	Moderately susceptible
oats	Avena sativa	Eurrabbie	Resistant	Slightly susceptible
oats	Avena sativa	Genie	Slightly susceptible	Moderately susceptible
oats	Avena sativa	Kojonup	Moderately susceptible	Highly susceptible
oats	Avena sativa	Swan	Highly resistant	Highly resistant

oats	Avena sativa	Williams	Resistant	Highly resistant
oats	Avena strigosa	Saia	Moderately susceptible	Resistant
pigeon pea	Cajanus cajan		Highly resistant	Resistant
ryecorn	Secale cereale		Moderately susceptible	Highly susceptible
ryegrass	Lolium ridigum		Moderately susceptible	Moderately susceptible
sabi grass	Urochloa mosambicensis		Resistant	Highly resistant
signal grass	Urochloa decumbens		Highly resistant	Resistant
sorghum	Sorghum spp.	BMR Octane	Slightly susceptible	Moderately susceptible
sorghum	Sorghum spp.	BMR Rocket	Moderately susceptible	Resistant
sorghum	Sorghum spp.	Dyna Dan	Resistant	Slightly susceptible
sorghum	Sorghum spp.	Dyna Powa	Resistant	Resistant
sorghum	Sorghum spp.	Jumbo	Highly resistant	Highly resistant
sorghum	Sorghum spp.	Lush	Slightly susceptible	Highly resistant
sorghum	Sorghum spp.	Scavenger	Moderately susceptible	Resistant
sorghum	Sorghum spp.	Sprint	Moderately susceptible	Slightly susceptible
sorghum	Sorghum spp.	Sugargraze	Highly susceptible	Moderately susceptible
sorghum	Sorghum spp.	Sweet Jumbo LPA	Resistant	Resistant
sorghum	Sorghum spp.	Banker	Moderately susceptible	Slightly susceptible
sorghum	Sorghum spp.	Lantern	Highly susceptible	Moderately susceptible
sorghum, grain	Sorghum spp.	Mr 43	Moderately susceptible	Moderately susceptible
sorghum, grain	Sorghum spp.	Mr Buster	Moderately susceptible	Slightly susceptible
sorghum, grain	Sorghum spp.	Mr Taurus	Moderately susceptible	Slightly susceptible
soybean	Glycine max	A6785	Resistant	Moderately susceptible
soybean	Glycine max	Bunya	Moderately susceptible	Moderately susceptible
soybean	Glycine max	Fernside	Highly resistant	Slightly susceptible
soybean	Glycine max	Hayman	Slightly susceptible	Moderately susceptible
soybean	Glycine max	Kuranda HB1	Highly resistant	Moderately susceptible
soybean	Glycine max	Moonbie	Slightly susceptible	Moderately susceptible
soybean	Glycine max	Mossman	Slightly susceptible	Slightly susceptible
soybean	Glycine max	New Bunya	Highly susceptible	Moderately susceptible

soybean	Glycine max	Soy 791	Slightly susceptible	Moderately susceptible
soybean	Glycine max	Stuart	Slightly susceptible	Moderately susceptible
soybean	Glycine max	T013 - 5	Highly resistant	Slightly susceptible
soybean	Glycine max	T183 - 3	Resistant	Slightly susceptible
sunflower	Helianthus annuus	Greystripe	Highly susceptible	Highly susceptible
sunn hemp	Crotolaria juncea		Resistant	Resistant
sweetcorn	Zea mays	Acceleration	Highly susceptible	Moderately susceptible
sweetcorn	Zea mays	Inception	Highly susceptible	Highly susceptible
sweetcorn	Zea mays	Messenger	Highly susceptible	Highly susceptible
sweetcorn	Zea mays	SV1446SD	Highly susceptible	Highly susceptible
sweet smother grass	Dactyloctenium australe		Highly resistant	Highly resistant
triticale	X Triticosecale		Moderately susceptible	Moderately susceptible
triticale	X Triticosecale	Crackerjack2	Moderately susceptible	Moderately susceptible
vetch	Vicia faba	Popany	Moderately susceptible	Moderately susceptible
wheat	Triticum aestivum	Bennett	Slightly susceptible	Highly susceptible
wheat	Triticum aestivum	Brennan	Moderately susceptible	Moderately susceptible
wheat	Triticum aestivum	Elmore	Slightly susceptible	Moderately susceptible
wheat	Triticum aestivum	Illabo	Moderately susceptible	Moderately susceptible
wheat	Triticum aestivum	Naparoo	Moderately susceptible	Moderately susceptible
zoysia grass	Zoysia tenuifolia		Moderately susceptible	Moderately susceptible

R. reniformis experiments on rotation crops

The reproductive factors of *R. reniformis* in resistant crops were less than 1 indicating that the final populations densities of *R. reniformis* decreased.

Seven potentially useful crops were tested for resistance and six were found not to increase the population of *R. reniformis* on the roots are therefore deemed resistant. These cultivars are Moonson8 maize, Maxa millet, Alloway peanuts, Callide Rhodes grass, Jumbo sorghum, and sunn hemp (Table 2).

Table 2 Summary of resistance/susceptibility of rotation crop cultivars to reniform nematode (*Rotylenchulus reniformis*)

Common name	Species	Cultivar	Pratylenchus zeae
maize	Zea mays	Monsoon 8	Resistant
millet	Pennisetum glaucum	Maxa	Resistant
peanut	Arachis hypogaea	Alloway	Resistant
Rhodes grass	Chloris gayana	Callide	Resistant
sorghum	Sorghum spp.	Jumbo	Resistant
soybean	Glycine max	A6785	Susceptible
sunn hemp	Crotalaria juncea	sunn hemp	Resistant
tomato	Solanum lycopersicum	Tiny Tim	Susceptible

P. zeae experiments on rotation crops

The reproductive factors of *P. zeae* in roots of resistant crops were less than 1 indicating that the final populations densities of *P. zeae* decreased.

Five cultivars of groundnut/peanut were resistant to *P. zeae* while five soybean cultivars were also resistant to *P. zeae*. These include the varieties Alloway, Holt, Kairi, P85 and Wheller peanuts and A6785, Hayman, Kuranda HB1, Mossman and New Bunya soybeans (Table 3).

Table 3 Summary of resistance/susceptibility of rotation crop cultivars to lesion nematode (*Pratylenchus zeae*)

Common name	Species	Cultivar	Pratylenchus zeae
groundnut	Arachis hypogaea	Alloway	Resistant
groundnut	Arachis hypogaea	Holt	Resistant
groundnut	Arachis hypogaea	Kairi	Resistant
groundnut	Arachis hypogaea	P85	Resistant
groundnut	Arachis hypogaea	Wheller	Resistant
soybean	Glycine max	A6785	Resistant
soybean	Glycine max	Hayman	Resistant

soybean	Glycine max	Kuranda HB1	Resistant
soybean	Glycine max	Mossman	Resistant
soybean	Glycine max	New Bunya	Resistant
maize	Zea mays	Messenger	Susceptible

Meloidogyne incognita, M. javanica and R. reniformis experiments on sweetpotato cultivars

Two sweetpotato cultivars were resistant to *M. incognita* while 13 were resistant to *M. javanica*. One sweetpotato cultivar of the six screened was resistant to *R. reniformis* (Table 4).

Early in the project the sweetpotato cultivars Bellevue and Beauregard were tested for their susceptibility to local populations of *M. incognita* and *M. javanica* (Table 4). Information provided was that *M. javanica* would not complete its life cycle on Bellevue. However, Bellevue was moderately susceptible to *M. javanica* with a reproduction factor of 63 (data not shown) and slightly susceptible to *M. incognita* (for which it was breed) with a reproduction factor of 4. In the same experiment Beauregard was highly susceptible to both *M. incognita* and *M. javanica*.

Table 4 Summary of resistance/susceptibility of sweet potato cultivars to two species of root-knot nematode and reniform nematode

Crop	Cultivar	Root-knot nematode		Reniform nematode
		M. incognita	M. javanica	R. reniformis
sweetpotato	Beauregard	Highly susceptible	Highly susceptible	Susceptible
sweetpotato	Bellevue	Slightly susceptible	Moderately susceptible	Susceptible
sweetpotato	Bonita	Moderately susceptible	Resistant	
sweetpotato	Eclipse	Moderately susceptible	Slightly susceptible	
sweetpotato	Murasaki	Moderately susceptible	Moderately susceptible	Susceptible
sweetpotato	Northern Star	Slightly susceptible	Highly resistant	Susceptible
sweetpotato	Orleans	Highly susceptible	Highly susceptible	Susceptible
sweetpotato	Southern Star	Moderately susceptible	Moderately susceptible	
sweetpotato	WSPF	Moderately susceptible	Resistant	Resistant
sweetpotato	New Cultivar 1	Moderately susceptible	Resistant	
sweetpotato	New Cultivar 2	Highly resistant	Highly resistant	
sweetpotato	New Cultivar 4	Moderately susceptible	Highly resistant	
sweetpotato	New Cultivar 6	Highly susceptible	Slightly susceptible	
sweetpotato	New Cultivar 7	Highly susceptible	Resistant	
sweetpotato	New Cultivar 8	Highly susceptible	Highly resistant	
sweetpotato	New Cultivar 9	Moderately susceptible	Highly resistant	
sweetpotato	New Cultivar 10	Moderately susceptible	Highly resistant	
sweetpotato	New Cultivar 11p	Highly susceptible	Resistant	

sweetpotato	New Cultivar 12p	Moderately susceptible	Highly susceptible	
sweetpotato	New Cultivar 13	Moderately susceptible	Resistant	
sweetpotato	New Cultivar 14	Resistant	Moderately susceptible	
sweetpotato	New Cultivar 15	Moderately susceptible	Resistant	
sweetpotato	New Cultivar 16	Highly susceptible	Highly susceptible	
sweetpotato	New Cultivar 17	Highly susceptible	Highly susceptible	

Conclusion

Thirty-six varieties were resistant or highly resistant to *M. incognita*, *M. javanica* or both. This includes 2 brassicas, 13 legumes and 14 grasses resistant to *M. incognita* and 8 legumes and 14 grasses resistant *M. javanica*.

Cultivars of eight legumes (ground nut, sunn hemp and pigeon pea), two oats, three grasses and three forage sorghums were resistant to both *M. incognita* and *M. javanica* making these cultivars excellent rotation crops to reduce root-knot nematode numbers when the species of root-knot nematode in a field/block is unknown or a mix of the 2 species.

Two sweetpotato cultivars were resistant to *M. incognita* while 13 were resistant to *M. javanica*. One sweetpotato cultivar of the six screened was resistant to *R. reniformis* (Table 4).

This resistance screening work has expanded the range of suitable rotation options for sweetpotato growers to help manage a range of plant-parasitic nematode pests. Available varieties may frequently change, especially for crops such as forage sorghum. This assessment of some new varieties, and some crop types which haven't previously been screened, provides a useful update of resistant rotations for the Australian sweetpotato industry. Screening of sweetpotato cultivars for nematode resistance under Australian conditions using locally sourced nematode species provides valuable information on varietal selection for growers.

Image 1 Jennifer Cobon inoculating a potted plant species with nematodes.

Image 2 Glasshouse pot trials inoculated with nematodes to test the host status of plant cultivars.